Acta Crystallographica Section E

Structure Reports

Online

(2S)-1-(Benzoylthiocarbamoyl)pyrrolidine-2-carboxylic acid monohydrate

ISSN 1600-5368

Nurziana Ngah,* Mohammad B. Kassim and Bohari M. Yamin

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
nurziana_ngah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in main residue
R factor $=0.037$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$, the benzoyl group lies out of the plane of the $\mathrm{N}_{2} \mathrm{CS}$ thiourea unit, having a $\mathrm{C}_{\text {carbonyl }}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ torsion angle of 119.4 (4) ${ }^{\circ}$. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds, forming a twodimensional network.

Comment

In the benzoylthiourea derivatives of amino acids such as $(2 S)$ -2-(3-benzoylthioureido)-3-methylbutyric acid (Ngah et al., 2005), and 2-(3-benzoylthioureido)propionic acid (Ngah et al., 2006), the N atom of the amino acid attached to the thione carbon has an H atom bonded to it. However, in the title molecule, the pyrrolidine N atom has no attached H atom. The $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$ torsion angle of 119.4 (4) ${ }^{\circ}$ shows that the benzoyl group lies significantly out of the thiourea plane. As in most benzoylthiourea compounds, the benzoyl group is approximately trans to the thiono S atom across the $\mathrm{C} 7-\mathrm{N} 1$ bond. The bonds length and angles are in normal ranges (Allen et al., 1987).

(I)

The crystal structure is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a two-dimensional network (Fig. 2, Table 1).

Experimental

An equimolar solution of benzoyl isothiocyanate ($0.03 \mathrm{~mol}, 5.04 \mathrm{~g}$) and proline ($0.03 \mathrm{~mol}, 3.45 \mathrm{~g}$) in acetone (200 ml) was refluxed for 1 h in a two-necked round-bottomed flask. The mixture was filtered into a beaker containing some ice. The resulting white precipitate was washed with distilled water followed by cold acetone, then dried in a vaccum desiccator (yield $75 \%, 6.26 \mathrm{~g}$). Recrystallization from methanol yielded colourless crystals suitable for X-ray analysis (m.p. $430.1-430.6 \mathrm{~K}$). The water of crystallization comes from wet solvent or atmospheric moisture.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=296.34$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.05$ (4) \AA
$b=12.00(6) \AA$
$c=13.33(6) \AA$
$V=1448(12) \AA^{3}$

Data collection

Bruker SMART APEX CCD area-	6893 measured reflections
\quad detector diffractometer	2527 independent reflections
ω scans	2047 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.039$
$(S A D A B S ;$ Bruker, 2000)	$\theta_{\max }=25.0^{\circ}$
$\quad T \quad=0.890, T$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.088$
$S=0.99$
2527 reflections
191 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.360 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.50 \times 0.30 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

6893 measured reflections
2527 independent reflections 2047 reflections with $I>2 \sigma(I)$
$\theta=$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0468 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \quad 634 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.01(10)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {i }}$	0.86	2.31	$3.113(16)$	156
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.97	$2.754(14)$	160
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iii}}$	$0.82(2)$	$2.22(2)$	$2.945(15)$	$148(3)$
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{i i}$	$0.82(2)$	$1.91(2)$	$2.728(14)$	$177(3)$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{~S}^{\mathrm{iv}}$	0.97	2.87	$3.754(19)$	152

Symmetry codes: (i) $x+\frac{1}{2},-y-\frac{1}{2},-z-1$; (ii) $-x, y-\frac{1}{2},-z-\frac{3}{2}$; (iii) $x-1, y, z$; (iv) $-x+\frac{1}{2},-y-1, z-\frac{1}{2}$.

H atoms of the water molecule were located in a difference map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{O}-$ $\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for $\mathrm{CH}, \mathrm{CH}_{2}$ and NH , and $U_{\mathrm{iso}}(\mathrm{H})=1.5_{\mathrm{eq}}(\mathrm{O})$ for OH . Atom C 10 and its attached H atoms are disordered over two sites, A and B, with site occupancy factors of 0.916 (7) and 0.084 (7), respectively.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Figure 1
The molecular structure of the title compound, (I), shown with 50% probability displacement ellipsoids. The minor disorder component has been omitted.

Figure 2
Packing diagram of (I), viewed down the a axis. The dashed lines denote hydrogen bonds. The minor disorder component has been omitted.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT
(Version 6.36a), Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ngah, N., Kassim, M. B. \& Yamin, B. M. (2006). Acta Cryst. E62, o381-o382. Ngah, N., Shah, N. M., Kassim, M. B. \& Yamin, B. M. (2005). Acta Cryst. E61, o1767-o1768.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin. USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

